A self-referential HOWTO on release engineering*

Mark Galassi®

Space Science and Applications group
Los Alamos National Laboratoryt

February 1, 2018

Abstract

Release engineering is a fundamental part of the software development cycle: it is the point at which quality control
is exercised and bug fixes are integrated. The way in which software is released gives the end user her first experience
of a software package, while in scientific computing release engineering can guarantee reproducibility. For these reasons
and others the release process is a good indicator of the maturity and organization of a development team.

Software teams often do not put in place a release process at the beginning. This is unfortunate because the team
does not have early and continuous execution of test suites, and it does not exercise the software in the same conditions
as the end users.

I describe an approach to release engineering based on the software tools developed and used by the GNU project,
together with several specific proposals related to packaging and distribution. I do this in a step-by-step manner,
demonstrating how this very paper is written and built using proper release engineering methods. Because many
aspects of release engineering are not exercised in the building of the paper, the accompanying software repository also
contains examples of software libraries.

*For use with software version 1.0.0plus
Tmark@galassi.org
{LA-UR-14-21151

Contents

IL Motivation and plan| 3
[1.1 A historical example: the GNU Scientific |
| Library] L. 3
[1.2 Requirements| 3
[T.3~ A gritty and real business| 3
1.4 And what are these established practices?| . 4
I1.5 A preview of our tour| 4
|2 Getting started with our toy-releng project| 5
2.1 Cloning the repository] 5
2.2 Creating a first program and build system| . 5
2.3 First stab at tagging and releasing: putting |
[out release 0.1.0[. 6
2.4 What do your “end users” do with a tarball?| 7
2.5 Adding a few more needed files| 7
2.6 Making the build system interact with the |
I Program|o e e e e e e 7
[2.7 _Adding documentation| 7
2.8 utting out release 0.2.0/ 8
[3__Completing toy-releng| 9
3.1 Making an RPM package|] 9
3.2 utting out release 0.3.0/ 11
8.3 Debian packagingf. 11
3.4 Release branches and 0.4.0/. 12

3.5 Testing 1nstalling and upgrading the packages| 13

4 Introducing a library, and release 0.5.0| 15
4.1 A simple library, built and installed by hand| 15
4.2 Building and installing that simple library |

[with automakel 16
4.3 Making libtoyreleng a shared library| 16
4.4 Updating our packaging spec to install the |

[library] 17
4.5 Releasing 0.5.0: pre-releases and final release] 17
4.6 Closing out (for now) the 0.5 release branch| 18

[5 Bug-fixes, test suites and 0.5.1] 19
b.1 Receiving and veritying the bug report| . . . 19
5.2 Returning to the release-0.5 branch|. 19
p.3 Adding a test program|. 19
p.4 Fixing the bugl 20
b5 Release 0511 20

|6 Topics — versioning| 21
6.1 Discussion of version numberingl. 21
6.2 Shared library versioning| 22

|7 Topics — project management tools| 24
[7.1 Bug and issue tracking| 24
[72~ Continuous integration tools|. 24
[r.3 Public hosting|. 24

|8 Topics — more about the world of packaging| 26
8.1 0 shou o the packaging” 26
8.2 Coordinated package repositories (apt, yum)| 26

19 Topics — miscellaneous notes and tricks| 28
9.1 Adding version info to IXIpX] 28
[02 Other build systems| 28
9.3 Virtual machines| 30

|10 Acknowledgments| 31

IA_Collected release checklistsl 32
IA.1 Starting a project|. 32
|A.2 Leading up to a releasel. 32
|A.3 Putting out the final release 32

Chapter 1

Motivation and plan

A few years ago in the course of a social conversation a
fellow scientist and I dwelled upon software development.
He told me that like most physicists he could write soft-
ware for his own purposes, but that he could not imagine
writing software that others could use.

I have always wanted others to be able to use my sci-
entific software, which was a big part of the driver behind
the GNU Scientific Library (GSL) (Galassi, Theiler, and
Gough 2009)), to which I contributed. I have also never felt
that “usability by others” was such a difficult goal.

In this article I present some procedures and examples
which I hope will guide you into releasing your software
in a careful and principled way. If we are successful this
will improve the experience of your end users and make it
straightforward for you to implement robust quality con-
trol.

1.1 A historical example: the GNU
Scientific Library

The GSL is a large and complex piece of software, yet
it is robustly engineered and easily installed from source
code. It has been straightforwardly packaged for the major
GNU/Linux packaging approaches (Debian and Red Hat)
as well as being available on the proprietary Macintosh and
Windows operating systems.

This “robust engineering” grew out of a few design prin-
ciples:

1. a road map with clear goals

2. a design document with coding standards
3. a build and release system
4

. a testing framework

o

comprehensive high-quality documentation

We derived almost all of our approach from the estab-
lished practices of the free software movement (Stallman
1985). We also adopted the GNU Coding Standards (Stall-
man [1992-2013)) in their entirety.

A decade and a half later the GSL is still robust, rel-
evant and widely used, confirming the large return on a
small upfront investment.

1.2 Requirements

A release engineering approach should, at a minimum, en-
sure:

Reproducibiliy It should always be clear if the installa-
tion of your software is a proper release (and which
version it is), a development snapshot, a beta test,
... In addition, it should be possible to pull together
the exact set of external tools and internal software
which went into any past release.

Quality control The release process should guarantee
frequent execution of the software test suites.

Easy installation The software should install easily on
target platforms (your end user’s computers). This
often means using the native packaging approach for
that system.

Upgrade path You should be able to upgrade the soft-
ware, or even remove it, and know that there are no
files from the previous version littering your comput-
ers disk and inviting trouble.

Rapid problem resolution There should be a straight-
forward way to connect problem reports with the
testing infrastructure and the version control system,
so that developers and end users know what bugs are
expected to be fixed in a new release.

Portability The software should be robust enough to run
on different operating system distributions.

1.3 A gritty and real business

Before we embark upon this tutorial I must emphasize that
release engineering is an area of computing that is seldom
clean and tidy.

Occasionally you get lucky and things are tidy: for ex-
ample, the GSL is purely mathematical software, where
each routine is a black box that takes an input and gives
a deterministic output. It uses very stable infrastructure
components: the C programming language, floating point
arithmetic and the standard math library follow standards
that have barely changed in recent decades.

Even just using C++ as your programming language
increases the complexity: the C++ standard is still evolv-
ing, and if you write code that uses the C++11 standard
you will have to do some careful checking to see that your
program can be built on a given computer.

Release engineering is even more difficult if, for exam-
ple, your software uses a graphical widget toolkit: these

pieces of infrastructure are seldom standardized, they are
implemented very differently on different platforms, and
they change rapidly with each new version.

When your code uses this fussy infrastructure you will
find that you need to test it on many different platforms,
and each platform will require that your code handle
special cases according to which version of the graphical
toolkit is installed on the target system.

This is even more true if your package involves a web
user interface: the dust is barely beginning to settle in that
arena, with several contenders among server-side platforms
and a variety of libraries for the client side.

So do not expect that following these “established prac-
tices” will make everything smooth: you will still have to
come up with dirty tricks to deal with this real-world lack
of neatness.

1.4 And what are these established
practices?

The shortest summary of how to start a “GNU style”
project would be:

1. Use version control from the very beginning. Nowa-
days (since 2005) use a distributed version control
system, such as Mercurial or Git.

2. Write down a design which allows a reader to close
her eyes and visualize the project as if it were a movie
playing in her head.

3. Create a skeleton project with just a few files of
source code.

4. While the project is tiny create a build system us-
ing the GNU autotools or something equivalent.
(Vaughan et al. |[2000)) (T discuss build systems more

in Section[9.2])

5. Start writing documentation immediately and con-
tinue to (re)write it as you develop the software.
Your documentation should include (at least) a ped-
agogical tutorial and a full reference.

6. When you release to the public follow a careful pro-
cedure leading up to the publication of your source
code. The GNU coding standards specify what the
“tarball” with your source code should look like. The
GNU autotools make it easy to generate a tarball by
typing “make dist” Or “make distcheck’.

7. Work with the “package maintainers” — these are peo-
ple who prepare binary packages for the various dis-
tributions (it could even be you or someone on your
team).

1.5 A preview of our tour

My plan is to give you a self-referential HOWTO: this ar-
ticle guides you through the release engineering process for
a project that includes little other than ... this article!

We will start by creating a skeleton project with a
mostly empty program — just enough to demonstrate a
build system that compiles it automatically.

Then we will create such a build system using the GNU
autotools; this is where we start introducing version num-
bers.

At this point we will introduce a simple procedure for
making a release.

Then we will add some documentation source files, such
as this tutorial and a man page, and we will have the build
system generate the documentation product (pdf files, man
page output, ...)

Then our first major step: we will adapt our build sys-
tem to make binary packages, starting with RPM packages
for Red Hat based GNU/Linux systems.

Then we will add the ability to make deb packages for
Debian and Ubuntu GNU /Linux systems.

Once we have a smooth approach to generating pack-
ages we will make our software project more complete by
introducing a library. This will then prompt us to intro-
duce a test suite for the library.

We will then add a bug and introduce a test program
that fails because of the bug. This is an important formal
step because it guarantees that we will know if the same
bug reappears.

We then delve into some special topics: a discussion of
versioning, how that communicates information to recipi-
ents of your software, and how you can manage versions.
Then a discussion of some useful tools for project manage-
ment, and then more on packaging.

We will conclude with some miscellaneous notes and
tricks, and finally an appendix with checklists for software
releases.

Chapter 2

Getting started with
our toy-releng
project

2.1 Cloning the repository

First you should clone the repository which I am using
to build this paper. The version control system is Mer-
curial (Mackall 2006), and the project is hosted on the
public server bitbucket (Atalassian [2015). You can clone
the repository with these commands:

hg clone https://markgalassi@bitbucket.org/markgalassi/toy-releng
cd toy-releng

You should also make your own work area to try out these
examples. In a separate terminal you should type:

mkdir my-releng
cd my-releng

and put this area under version control with:
hg init .

(note that there is a . (period) at the end of that line.)

If you have done both (cloning the toy-releng repos-
itory with this paper and making your own my-releng
repository) then you could work with them side-by-side,
possibly with two separate terminal windows.

If you are more comfortable with git then go ahead and
use that; just make sure it’s a modern distributed version
control system (DVCS). At the time of writing the robust,
full-featured and widely used DVCSs are Mercurial and
Git.

Now that you have cloned it you will be able to find
the files I refer to below; you can copy them into your own
repository step by step.

2.2 Creating a first program and
build system

Create files called toy-releng-sample.c and
toy-releng-sample.h with these lines in them:

#include <stdio.h>
#include "toy-releng-sample.h"

int main(int argc, char *argv([])
{
return O;

}

Listing 2.1: toy-releng-sample.c

#pragma once

#define TOY_RELENG_SAMPLE_CONSTANT 3.7

Listing 2.2: toy-releng-sample.h

Add these files to version control with

hg add toy-releng-sample.c toy-releng-sample.h
hg commit -m "Added_first_draft_of_toy-releng-sample_program"

For good measure we will also add a (brief) README

file{T]

toy-releng is a project to demonstrate how to do
comprehensive and highly principled release engineering
on a "toy" project

Listing 2.3: README

Now we will add the files needed by automake and au-
toconf so that we can build this program. Since our pro-
gram is be quite trivial and the GNU autotools system has
very advanced capabilities, this will be a bit like using the
proverbial sledgehammer to kill a fly. But it will scale well
to more complex projects, and it also gives us RPM and
Debian packaging, as well as a testing framework, for free.

Create the files configure.ac and Makefile.am:

AC_INIT([toy-releng], [0.0.0plus], [mark@galassi.org])
AM_INIT_AUTOMAKE([-Wall foreign])
AC_CONFIG_SRCDIR([config.h.in])

AC_CONFIG_HEADERS ([config.h])

Checks for programs.

AC_PROG_CC

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

Listing 2.4: configure.ac

bin_PROGRAMS = toy-releng-sample
toy_releng_sample_SOURCES = toy-releng-sample.c
include_HEADERS = toy-releng-sample.h

Listing 2.5: Makefile.am

I don’t intend to give a full tutorial on autotools here
(Vaughan et al. [2000)), but I will show you the most com-
mon formula for building your program. Starting from
your top level source directory type the following com-
mands:

1Of course every time you add a file you need to make sure that you also add it to the version control system; in this case with “hg add README”

and you will eventually also need to commit your work with “hg commit”

autoreconf -i
mkdir _build
cd _build
../configure
make

Most of these steps were only needed the first time. In
future invocations you can usually just type

make

and of course you then run the program with

./toy-releng-sample

and it will do nothing, since the program has no instruc-
tions in it yet.

Although the program did nothing, please note an im-
portant thing in how we built it: we built the program
in a separate directory from where the sources are. We
ran “configure”, “make” and “./toy-releng-sample” in the
_build subdirectory. This is standard practice in software
development: using separate build directories is a good
habit because it flushes out some unhealthy build system
assumptions and it does not litter your source directories
with compiler output and other computer-generated files.

2.3 First stab at tagging and releas-
ing: putting out release 0.1.0

Now that you have a build system you could go ahead and
release your program. The checklist is for this first-ever
release is:

1. Make sure you are conceptually happy with what you
have done.

2. Create a ChangeLog file in your top level source di-
rectory. This is a file that lists all changes you make
to your source code, describing briefly what has been
done in each file. This is for developers to be able
to get a feeling for what has changed in the source
codeE| An example is in Listing and you can also
see much bigger examples entries in the repository for
this paper. A full description of the ChangeLog spec-
ification is in the GNU Coding Standards (Stallman
1992-2013)). Add it to version control with “hg add \
ChangeLog”’ in the source directory.

3. Create a NEWS file in your top level source direc-
tory with end-user-visible release notes (an example
is shown in Listing . Add it to version control
with “hg add NEWS” in the source directory.

4. Make sure that everything builds and installs with
“make distcheck’ (in the _build directory.)

5. Commit to version control.

6. Edit configure.ac and change the version from
0.0.0plus t0 0.1.0.

7. Commit to version control

8. Tag the version control repository with

hg tag release-0.1.0

This tagging step is extremely important because it
guarantees that you can always reproduce what went
into version 0.1.0 from your version control reposi-
tory. This reproducibility will become very impor-
tant as your project grows, but even now you should
make a habit of it.

9. You can now make the tarball with

make distcheck

2015-06-10 Mark Galassi <markQgalassi.org>
* NEWS: wrote news entries for release 0.1.0
* configure.ac: created for toy-releng project

* Makefile.am: created for toy-releng project

Listing 2.6: ChangeLog

* Noteworthy changes in release 0.1.0 (2014-02-14)

** Features

*** Simple program and build system

Simple program which builds and executes with an \
autotools

build system.

Listing 2.7: NEWS

You now have a source code tarball toy-releng-0.1.
0.tar.gz which you can distribute to end users. You are
now ready to return to development, but I will add one
last item to the checklist.

To motivate this last item on the checklist let me re-
mind you that in Section [I.2]I stressed the importance of
reproducibility. Now that we have built a tarball called
toy-releng-0.1.0.tar.gz, imagine what would happen
if we made changes to the code and then typed “make dist”
(or “make distcheck”): you would have created distributions
of your code that are both labeled as being version 0.1.0,
but they are different!

The need be certain about what is in our formally re-
leased versions motivates the last item in our checklist:

10. As you return to development you should edit
configure.ac and change the version from 0.1.0
to 0.1.0plus. The “plus” is our convention to signal
that these are “code snapshots” and should not be
confused with our “formal released” 0.1.0 version.
You can commit with

hg commit -m "return to_development snapshots"

2A good practice is to use entries in the ChangeLog file as a commit log in version control. The opposite approach also works: to convert

version control logs into a ChangeLog file.

2.4 What do your “end users” do
with a tarball?

Your end users can build the software from a tarball with
a rather minimal set of developer tools. They do not need
all the fancy release engineering apparatus that you have
(autotools, for example). They only need a basic version
of make, a C compiler, and a shell.
Here is how the end user would build and install the

software from your tarball:

tar zxvf toy-releng-0.1.0.tar.gz

cd toy-releng-0.1.0

./configure
make install

at which point the toy-releng-sample binary is installed in
/usr/local/bin and can be run from the command line.
This has been the standard way of distributing soft-
ware in the GNU project for a very long time (Stallman
1992-2013)).
(Now that you have tried that out, clean it all up so it
does not interfere with our future builds: “make uninstall”

and “cd ..; rm -r toy—releng—O.l.O”)

2.5 Adding a few more needed files

From a pedagogical point of view it was good to quickly
put out a release and start getting comfortable with the
process. But now we must pause and discuss a couple of
crucial steps in this process: installation docs and copy-
right /licensing.

Standard GNU tarballs install in a very uniform man-
ner as you saw in Section and there is a boiler-plate
file called INSTALL that is distributed by automake. You
can add it to your repository with the following commands
(in your top level source directory):

cp /usr/share/automake-1.14/INSTALL .
hg add INSTALL

and it will be automatically included in the tarball.

You should also immediately start clarifying the legal
status of your source code, since your files will soon start
getting long enough (more than about 10 lines) that they
cannot be copied unless you grant explicit permission.

We will do this by creating two files called COPY-
RIGHT and LICENSE. The file COPYRIGHT is a brief
document which tells the recipient that toy-releng is free
software and that the licensing terms (the GNU General
Public License) are spelled out in the file called LICENSE.

We then add these two files to the EXTRA_DIST section
of Makefile.anf|

2.6 Making the build system inter-
act with the program

Many programs need to know what version they are, if
nothing else to be able to inform the user. To add some
toy complexity to our program we will make it interact
with the build system in the following manner: the build
system makes a file called config.h which defines C prepro-
cessor macros PACKAGE and VERSION to match the arguments
to AC_INIT() in configure.ac

Modify toy-releng-sample.c to #include "config.h"
and to have a line that references PACKAGE and VERSION in
its main:

#include <stdio.h>
#include "toy-releng-sample.h"
#include "config.h"

int main(int argc, char *argv[|)
printf ("welcome_to_the_package_%s,_version_%s\n",

PACKAGE, VERSION);
return 0;

Listing 2.8: toy-releng-sample.c

If you compile and run it you will see that information
from the build system (package name and version) appears
in the program’s output:
$ make
[lots of output from build]

$./toy-releng-sample
welcome to the package toy-releng, version 0.1.0plus

2.7 Adding documentation

Automake provides automatic handling of UNIX man
pages and TeXinfo documentation: they will be built and
installed in standard destination directories on your sys-
tem.

There are many types of documentation beyond man
pages and TeXinfo docs, but in this toy project we will
only have two toy documents for inclusion: a man page for
toy-releng and a journal article written in IXTEX (this
article!) We will create simple documents, and then show
how the build system builds them.

First create a man page called toy-releng-sample.1
(you can lift it from the toy-releng repository.) Put it in
the top level directory and put this line in Makefile.am:

dist_man_MANS = toy-releng-sample.l

Listing 2.9: Makefile.am

and when you type make install the man page will be
generated and installed in /usr/local/share/man/manl/
toy-releng-sample.l and can be viewed with

export MANPATH=/usr/local/share/man
man toy-releng-sample

3Note that you can look at my version control repository for toy-releng for examples of the COPYRIGHT and LICENSING files, and to see what

EXTRA _DIST looks like inside Makefile.am.

Then let us create a M TEX document with a “scholarly”
article. For simplicity you can create a trivial almost-
empty KTEX document, or you can lift this very paper
from my repository.

Either way, you put the two files toy-releng-howto.
tex and releng.bib in a subdirectory (for example
howto-paper). Building from the Makefile.am is a bit
more elaborate. Add these lines to Makefile.am:

pdf-local: toy-releng-howto.pdf

toy-releng-howto.pdf: howto-paper/toy-releng-howto.tex \
howto-paper/releng.bib
BIBINPUTS=$(srcdir) /howto-paper latexmk -f -pdf $<

install-pdf-local: pdf-local
mkdir -p $(DESTDIR)$(pkgdatadir)/
cp toy-releng-howto.pdf $(DESTDIR)$(pkgdatadir)/

Listing 2.10: Makefile.am

and add howto-paper/toy-releng-howto.tex and
howto-paper/releng.bib to the EXTRA_DIST variable
in Makefile.am. You can build the PDF document with
“make pdf” and install it with “make install—pdf”ﬁ

2.8 Putting out release 0.2.0

Now that we have introduced these new features and doc-
umentation we can put out a new version. We will update
the NEWS file (from the top) with the entry

* Noteworthy changes in release 0.2.0 (2014-02-19)

** Features

***% Added interaction of build system with program:

toy-releng now uses PACKAGE and VERSION out of configure.ac

**x Wrote man page

You can now type "man toy-releng" to see the man page.

*** Started writing tutorial HOWTO article

There is now a good amount of work in \
howto-paper/toy-releng-howto.tex

Listing 2.11: NEWS

You should run “make distcheck” to see that a good tar-
ball is being built.

Now that you have documented your release you can
follow the simple checklist in Section [2.3] by commit-
ting, then editing configure.ac to set the version from
0.1.0plus to 0.2.0, committing that new version, run-
ning “hg tag release-0.2.0", then building the tarball
with “make distcheck”.

Before moving on remember to follow the step given in
Item [IQ] of the checklist in Section 2.3] and set the version
to 0.2.0plus

4As usual, check the accompanying software repository for extra detail on Makefile.am: there are extra details that I will not always put
into the text of this paper, such as the CLEANFILES variable and the clean-local: target.

Chapter 3

Completing
toy-releng

Version 0.2.0 got us to the point of releasing a source code
tarball for our program toy-releng-sample. This tarball
could build a C program, a manual, and a longer BTEX
document.

But since the 1990s the preferred way to deliver soft-
ware has been through binary packages. Binary packaging
approaches differ from one operating system to another
and even from one distribution to another. We will dis-
cuss two GNU/Linux packaging approaches:

e Redhat Packager Manager (RPM), used by the Red
Hat and Fedora distributions of the GNU /Linux op-
erating system (among others).

e Debian packages (deb), used by the Debian and
Ubuntu distributions of the GNU/Linux operating
system (among others).

Packaging is closely tied to the build system: the soft-
ware which helps create packages makes use of some Make-
file targets which are specified by the GNU coding stan-
dards and are automatically present when you use auto-
tools.

3.1 Making an RPM package

The Fedora project offers an up-to-date introduction to
RPM packaging (Fedora team [2013b)), as well as full guide-
lines for packaging (Fedora team [2013a).

Since these Fedora project documents are well-written I
will not explain the concepts, nor give a full reference, but
rather we will discuss how the RPM packaging procedure
interacts with our autotools-based build system.

3.1.1 Preparing a spec file

To make an RPM package we prepare a file called
toy-releng.spec. This file gives instructions on how to
get, build, install and bundle the binary program and its
supporting files.

The smallest skeleton of a spec file for toy-releng
(named toy-releng.spec) would look like this:

Name: toy-releng

Version: 0.2.0plus

Release: 1%

Summary : toy project to demonstrate release \
engineering

License: GPL

URL: \

https://bitbucket.org/markgalassi/toy-releng/overview
Source0: %{name}-%{version}.tar.gz
BuildRoot: %{_tmppath}/%{name}-%{version}-/%{release}-root

BuildRequires: texlive

%description

toy-releng is a project to demonstrate how to do \
comprehensive and

highly principled release engineering on a "toy" project

lprep
%hsetup -q

%build

%configure

make %{?_smp_mflags}
make pdf

%install

rm -rf $RPM_BUILD_ROOT

Ymake_install

make install-pdf DESTDIR=$RPM_BUILD_ROOT/

%files

%doc README NEWS Changelog toy-releng-howto.pdf
%{_datadir}/%{name}/*

%{_mandir}/manl/*

%{_includedir}/*.h

%{_bindir}/*

%changelog

* Tue Feb 18 2014 Mark Galassi

- first packaging; see distribution ChangeLog file for \
ChangeLog info

Listing 3.1: toy-releng.spec

3.1.2 Building and installing the RPM

Once toy-releng.spec is ready you prepare to build
the RPM by putting your tarball in a directory called
~/rpmbuild/SOURCES/

mkdir ~/rpmbuild/SOURCES

make dist

cp toy-releng-0.2.0plus.tar.gz ~/rpmbuild/SOURCES
rpmbuild -ba ../toy-releng.spec

you will see how the rpmbuild program goes through
all the sections of the spec file and ends up placing
your RPM in ~/rpmbuild/RPMS/x86_64/toy-releng-0.
2.0plus-1.x86_64.rpm. You can now install that RPM,
possibly with the command:

sudo rpm -Uvh \
~/rpmbuild/RPMS/x86_64/toy-releng-0.2.0plus-1.x86_64.rpm

and see what files have been installed:

$ rpm -ql toy-releng

/usr/bin/toy-releng

/usr/include/toy-releng.h
/usr/share/doc/toy-releng
/usr/share/doc/toy-releng/ChangeLog
/usr/share/doc/toy-releng/NEWS
/usr/share/doc/toy-releng/README
/usr/share/doc/toy-releng/toy-releng-howto.pdf
/usr/share/man/manl/toy-releng.1.gz
/usr/share/toy-releng/toy-releng-howto.pdf

You can now exercise the installation by typing commands
such as:

toy-releng
man toy-releng
evince /usr/share/dodc/toy-releng/toy-releng-howto.pdf &

3.1.3 Generating the spec file from the
build system

In listing I demonstrated a very simple spec file for
building toy-releng RPMs. The first two lines of the spec
file look like:

Name: toy-releng
Version: 0.2.0plus
oL

Listing 3.2: toy-releng.spec - first two lines

Since the package name and version are already given in
configure.ac, we appear to be violating one of our funda-
mental software engineering principles: do not duplicate
information; derive it instead. If you violate this principle
it is very easy to have “user error” in which you update
configure.ac but forget to update toy-releng.spec —
this kind of thing happens all the time.

Fortunately the autotools system allows us to have the
configure script generate toy-releng.spec from a skele-
ton file called toy-releng.spec.in with the first two lines
modified. Let us rename toy-releng.spec and add it to
our version control:

mv toy-releng.spec toy-releng.spec.in
hg add toy-releng.spec.in

and then modify the top two lines:

Name : @NAMEQ
Version: QVERSIONGQ
...
Listing 3.3: toy-releng.spec.in - first two lines with

substitution variables

where @NAME@ and @VERSION@ will be substituted by the
configure script. We also need to modify the end of
configure.ac:

...
AC_CONFIG_FILES([Makefile toy-releng.spec 1)
AC_OUTPUT

Listing 3.4: configure.ac - last lines which generate spec file

lsee Section

10

With these modifications to configure.ac and
toy-releng.spec.in you can use the new automatically
built spec file to build your RPM. Type in the following
sequence:

cd _build

make distcheck

cp toy-releng-0.2.0plus.tar.gz ~/rmpbuild/SOURCES/

rpmbuild -ba toy-releng.spec
which will give the same result we got in Section [3.1.2
but our configuration will be more robust as the software
evelves.

3.1.4 Going directly from tarball to RPM

You might notice that there were some repetitive (and pos-
sibly error-prone) steps involved in building the RPM: you
make a tarball, then you copy it to ~/rpmbuild/SOURCES/,
then you run rpmbuild.

There is a way of building an RPM directly from a tar-
ball, if (a) the tarball conforms to the GNU coding stan-
dards (which automake gives us) and (b) the top level di-
rectory contains a spec file.

Let us modify Makefile.am slightly to make sure we
distribute toy-releng.spec.in and toy-releng.spec.
The EXTRA_DIST variable now looks like:

EXTRA_DIST = COPYRIGHT LICENSE toy-releng.spec.in \
toy-releng.spec howto-paper/toy-releng-howto.tex \
howto-paper/releng.bib

Listing 3.5: Makefile.am - EXTRA DIST variable

You can now build your distribution tarball and your
RPM packages with two commands:

make distcheck
rpmbuild -ta toy-releng-0.2.0plus.tar.gz

Note the difference in invoking rpmbuild: when it
works from a spec file it takes the options -ba, while if
it’s working from a tarball it takes the options -ta

There are different points of view on whether the spec
file should be distributed separately from the application
or if it should be included in the tarballl

One point of view is the “official” one from the engineers
whose business it is to take a huge number of programs and
prepare them for a distribution, as the Fedora and Red Hat
engineers do. They have special conventions they follow for
spec files so they end up doing things quite differently from
how a developer would, and the developer-provided spec
file might just be misleading.

I instead prefer the “build RPM from tarball” approach.
Part of this is the simplicity of the command “rpmbuild -\
ta file.tar.gz’ and of not having to explicitly move your
sources around. More importantly, though: when you pro-
vide a spec file with your program you achieve two goals:

e You provide an easy way of making RPMs if your
program will not be part of a major distribution like
Fedora or Red Hat.

e If your package gets picked up for a distribution you
give a hint to the people who will prepare those spec
files: they can start from yours.

3.2 Putting out release 0.3.0

Adding the ability to make RPMs is a milestone for our
project and we will now put out a new release. Our release
procedure from Section [2.3] should still apply, but we will
add one more instruction to build the RPM.

We will get a bit fancier in Section [3.4] where we will
start using release branches, but for now let us enjoy our
very simple release checklist.

1. Add to the NEWS file with end-user-visible release
notes. For example:

* Noteworthy changes in release 0.3.0 (2014-02-20)

** Features

%% Added the ability to build RPMs
‘We now offer a toy-releng.spec.in file which allows you to build
RPMs with rpmbuild -ta toy-releng-0.3.0.tar.gz

%% Added significantly to toy-releng-howto.tex
Wrote a good part of the "Complete_toy-releng" section.

Listing 3.6: NEWS file for 0.3.0

2. Make sure that everything builds and installs with

“make distcheck’
3. Commit to version control.

4. Edit configure.ac and change the version from
0.2.0plus to 0.3.0

5. Commit to version control.

6. Tag the version control repository with

hg tag release-0.3.0

7. Prepare RPMs with:

make distcheck
rpmbuild -ta toy-releng-0.3.0.tar.gz

3.3 Debian packaging

It is also a good idea to distribute packages for Debian
GNU/Linux systems. These should also work for Ubuntu
and other Debian-based distributions.

I will not provide a full tutorial on Debian packaging,
since the Debian Packaging Team has written an excellent
one (Rodin and Aoki [1998-2013), but I will list the steps
you need to carry out for our program.

11

3.3.1 Preparing for Debian packaging

Instead of a single spec file, with Debian you need to pre-
pare several files — at least 4 for a straightforward package:
Debian/control, Debian/copyright, Debian/changelog
and Debian/rules — as well as some boiler-plate files.
The way Debian prepares these files is rather elaborate,
so we will work in a fresh copy of everything. My favorite
way of doing this is to make a directory called /tmp/sand-
box and work with a fresh version control clone in there.
From the top level directory in toy-releng we can do the
following:
mkdir /tmp/sandbox

hg clone . /tmp/sandbox/toy-releng
cd /tmp/sandbox/toy-releng

To let the Debian packaging “helper” scripts do their
work we need a Makefile ready in the current directory, so
we will run:

autoreconf -i

./configure

and now we have a Makefile and we are ready to prepare
the skeleton Debian files. The first command will create
a directory called Debian with a bunch of empty skeleton
files. We don’t need most of them so we will remove them
and set up just the ones we want:

dh_make --native --createorig -p toy-releng 0.3.0 -e \
"YOUR_EMAIL_ADDRESS"

(then type s’ to select a “single package” and hit enter to
accept.) Now remove the excess files and add the essential
ones to version control:

rm Debian/*.ex Debian/*.EX

rm Debian/README*

hg add Debian/control Debian/changelog \
Debian/copyright Debian/rules Debian/compat \
Debian/source/format

hg commit -m 'added boiler-plate Debian files with \
dh_make --native --createorig -p toy-releng_0.3.0 \
-e "YOUR_EMAIL_ADDRESS"'

hg push

and add those same files in the Debian directory to
Makefile.am’s EXTRA_DIST variable. That should now
look like:

EXTRA_DIST = COPYRIGHT LICENSE project-admin.org \
toy-releng.spec.in toy-releng.spec \
howto-paper/toy-releng-howto.tex \
howto-paper/releng.bib Debian/changelog Debian/compat \
Debian/control Debian/copyright Debian/rules \
Debian/source/format

Listing 3.7: Makefile.am

You will now need to modify a couple of these. The file
format is boiler-plate and does not need changes. The file
rules will also not need much work since we use autotools.
On the other hand we want to be clear about copyright and
licensing, so we edit the file Debian/copyright. You can
just fill in your name and the years, and since the file is
already set up for the GNU General Public License (GPL)

version 3, you can leave it as it is to use the GPL. Alter-
natively you may replace it with a different license.

The most important file is Debian/control. It has al-
ready been filled out for you, so you only have to make
a couple of small modifications. Edit it and choose a
Section: from the list at https://packages.Debian.
org/unstable/. In our case the section is Documentation.
You can leave most other lines in Debian/control un-
touched, but put a brief half-line description on the line
Description:, and on the next line you can start a longer
description (possibly from your README file) indented with
a space.

3.3.2 Building and installing the Debian
package

You are now ready to build your Debian package: let us
commit the changes with:

hg commit -m 'modified the Debian packaging files for our project'

now make sure you push these changes back to your main
repository clone, since here we are in a sandbox directory
that we will soon remove

hg push

The instruction to build the package is:

debuild -us -uc

You now have some files file (up one directory). The
actual package is . ./toy-releng_0.3.0_amd64.deb. You
can install this with:

sudo dpkg -i ../toy-releng_0.3.0_amd64.deb

and you can exercise it by typing:

cd ~
toy-releng
man toy-releng

and then you can remove it so that we can continue devel-
opment:

sudo dpkg -i ../toy-releng_0.3.0_amd64.deb

We are now done with preparation of our Debian pack-
age. It was good to work in a sandbox (i.e. in the directory
/tmp/sandbox because you might have a few false starts as
you prepare the files. But from now on we will only make
incremental changes to the Debian packaging files. So we
will push our changes back into our main working copy of
the repository and delete the sandbox:
hg push
cd /path/to/original-working-area
hg -v update
rm -r /tmp/sandbox/toy-releng ## WARNING: remove with care!

Note that in future releases you will simply run the
command “debchange” which will prompt you for a Debian/
changelog entry and update all Debian files as needed.

3.3.3 Generating Debian/control from the
build system?

You might now ask “wait a minute, when we built an RPM
spec file we made it so that toy-releng.spec was auto-
matically generated. This was because the Version: entry
in the spec file needed to match that in configure.ac, and
also because the rpmbuild command allows you to use a
spec file embedded in a tarball.

Debian packaging is different enough that at this time
I do not see the need for auto-generating the debian/
control file: it does not embed the version number and the
only line in Debian/control that might be redundant is
the line “Source: toy-releng’. Since the package name
will not change often (if at all), it is not as important to
interlock it to the PACKAGE variable in configure.ac.

3.4 Release branches and 0.4.0

3.4.1 Release branches:
workflow

motivation and

With our addition of Debian packaging files we are now
ready to release version 0.4.0 of toy-releng. We will use
a version control idea which is very important when your
project becomes complex, and is vital if your project has
several contributors.

Version control systems, and DVCSs in particular, have
the concept of a named branch. This allows you to com-
mit changes to version control without interfering with
what other people are doing. There are many ways to
use branches to prepare a release without freezing other
people’s coding efforts. I will describe one approach that
is widely use(ﬂ (Mercurial wiki team 2014)) and has the ad-
vantage that most contributors continue their work without
interference.

1. The team decides that the current state of the reposi-
tory is approximately what needs to be in the release.
At the same time some team members will probably
introduce code that should not be in the release.

2. The release engineer creates a branch which will be
used for this release (0.4.0) and its subsequent bug-
fix releases (0.4.1, 0.4.2, ...). Our convention will be
to call this branch branch-release-0.4 to indicate
that it will be used for all releases in the 0.4 series.

3. Contributors who are not engineering this release
continue working on the trunk.

4. The release engineer works on the code on the release
branch, possibly merging in specific changesets from
the trunk if something is added to the trunk that has
to be in the release.

2 Among others, the Gnu Compiler Collection (GCC) team uses a very similar approach (The GCC team [2015]).

12

https://packages.Debian.org/unstable/
https://packages.Debian.org/unstable/

5. The release engineer puts out intermediate releases
aimed at testing. The most common convention,
which I use here, is to have alpha snapshots, beta
snapshots and release candidates (rc¢). Each of these
looks like a release: the release engineer generates
tarballs, RPMs and Debian packages for them.

6. After the release is put out the release engineer will
do a final merging of the branch back onto the trunk.

7. After the release is put out everyone can forget about
the release branch until the time comes to put out a
bug-fix release.

3.4.2 Putting out pre-releases and release
on a branch

Let us apply this workflow idea to our repository: we will
prepare the branch for release 0.4.0. Then we will put
out a pre-release of the software. Pre-releases versions are
discussed at length in Section [6.1]

We start by putting out an alpha release
0.4.0~alpha.0. Most of the procedure resembles what
we have already done in Section 23] Note that at this
time I am proposing a specific choice of how we name
our version. This is a vast topic which I will discuss in

Section [6.1]

1. Make sure that all changes are committed and that
your collaborators have committed what they want
to go into this release. At this point the version in
the repository is sometimes called feature complete.

2. Create the release branch and update your working
copy to that branch. In mercurial the commands are:
hg branch branch-release-0.4

hg -v update branch-release-0.4

and from here on all your commits will go to that
branch.

3. If you are ready to put out your alpha release you
can immediately set the version in configure.ac:

AC_INIT([toy-releng]l, [0.4.0~alpha.0], \
[mark@galassi.org])

Listing 3.8: configure.ac

make sure you commit this change! For example:

hg commit -m 'putting out release 0.4.0~alpha.O'

4. Tag the repository and make tarballs/RPMs/debs:

hg tag release-0.4.0~alpha.0

make distcheck

rpmbuild -ta toy-releng-0.4.0~alpha.0.tar.gz
debchange -v 0.4.0~alpha.0

debuild -us -uc

13

5. Move the version in to

0.4.0~alpha.Oplus:

configure.ac

AC_INIT([toy-releng], [0.4.0~alpha.Oplus], \
[mark@galassi.org])

Listing 3.9: configure.ac

and update the Debian version for snapshots with

debchange -v 0.4.0~alpha.Oplus

And we have put out an alpha release on this branch.
As we fix various issues on the release branch we can put
out version 0.4.0~alpha.1, and so forth as needed for
testing. Eventually we will do the same for beta test ver-
sions (where we only fix critical bugs; no minor bugs or
feature additions). Finally we put out a series with ver-
sion numbers like 0.4.0~rc.0. Once those have passed all
tests we put out a release with version 0.4.0 and we can
ship it.

3.4.3 Branch merging

After we ship the release our release engineer should make
sure that any bugs she fixed on the release branch are
merged back onto the trunk. The command is simple to
write:

hg -v update default

hg merge branch-release-0.4

[resolve conflicts from the mergel
hg commit -m 'merged release branch into default branch'

but you will have to pay very close attention to resolving
conflicts in the merge.

3.5 Testing installing and upgrad-
ing the packages

We can try an amusing and instructive exercise which
demonstrates how useful package management can be, and
how our release approach allows us to faithfully reproduce
past versions of the software.

Let us do this particular exercise with a RedHat-
style operating system, although the same would work for
Debian-based systems.

If we are in our build directory we can generate tarballs
for all our past releases like this:

hg -v update release-0.1.0

make distcheck

hg -v update release-0.2.0

make distcheck

hg -v update release-0.3.0

make distcheck

hg -v update release-0.4.0~alpha.O
make distcheck

hg -v update release-0.4.0
make distcheck

of course we are have a reputation to defend as hackers, so
we might do this:

for rel in 0.1.0 0.2.0 0.3.0 0.4.0~alpha.0 0.4.0
do
hg -v update release-${rel}
make distcheck
done
1s toy-releng-*.tar.gz

or you could improve by taking a look at the output of hg
tags | grep release- and then trying:
REL_TAGS="hg tags | grep release-"
for rel in ${REL_TAGS}
do
hg -v update release-${rel}
make distcheck

done
1s toy-releng-*.tar.gz

This kind of scripting that pulls together version control
tags and the build system can be very useful when man-
aging a large project comprised of several packages.

After this, for good measure, we can update to the cur-
rent non-tagged state of the repository with hg -v update \
default, which corresponds to version 0.4.0plus. Then
make distcheck will build us a tarball of 0.4.0plus.

Now that we have all these tarballs we can generate
RPMs from them:

for tarball in toy-releng-*.tar.gz
do

rpmbuild -ta ${tarball}
done

Note that it would fail on 0.1.0 and 0.2.0 because we did
not yet have RPM spec files for those releases!
We now have tarballs for all these releases. We can try
to install them in sequence with:
sudo yum install -y toy-releng-0.3.0-1.fc20.x86_64.rpm
sudo yum install -y \
toy-releng-0.4.0~alpha.0-1.£c20.x86_64.rpm
sudo yum install -y toy-releng-0.4.0-1.fc20.x86_64.rpm

sudo yum install -y \
toy-releng-0.4.0plus-1.£c20.x86_64.rpm

Note that our version numbering scheme (discussed at
length in Section [6.1) is consistent with what RPM con-
siders to be “newer”.

This little exercise has shown that we can faithfully
reproduce a previous version of the software thanks our
approach to tagging releases.

14

Chapter 4

Introducing a library,
and release 0.5.0

In Section [I.3] I mentioned that release engineering is a
gritty and real business, but so far I have only shown you
how to release a software package that has a very simple
program.

A slightly more complex program which exhibits the
features we are interested in is one which:

e Builds and installs a library with a well-defined API.

e Builds and installs an end-user program, which might
use that library.

We will design a toy library for use with our toy-releng
program. The library will be called toyreleng and it will
offer rather trivial functions: tr_square(x), tr_cube(x)
and tr_hypot(x, y), where tr_hypot(z,y) = /22 + 32
The prefix tr_ is a common way for C libraries to denote
which functions are published and available to be called by
programs that use the library.

4.1 A simple library, built and in-
stalled by hand

Such a library is often implemented with a few C files which
we will call tr-square.c, tr-cube.c and tr-hypot.c,
and one header file which we will call toy-releng.h:

#include "toy-releng.h"

double tr_square(double x)
{
return x*x;

}

Listing 4.1: tr-square.c

#include "toy-releng.h"

double tr_cube(double x)

return x*x*x;

}

Listing 4.2: tr-cube.c

And a slightly more elaborate function to calculate the
hypotenuse given the two sides of a right triangleﬂ

#include "toy-releng.h"

double tr_hypot(double x, double y)
{

return sqrt(x*x + y*y);

Listing 4.3: tr-hypot.c

#ifndef _TOY_RELENG_H

#define _TOY_RELENG_H

double tr_square(double x);

double tr_cube(double x);

double tr_hypot(double x, double y);
#endif /#* _TOY_RELENG_H */

Listing 4.4: toy-releng.h

The way a traditional static library is built is by com-
piling each C file independently and then joining them in
an archive file called libtoyreleng.a. This can be done
with these commands:
gcc -c tr-square.c
gcc -c tr-cube.c
gcc -c tr-hypot.c
ar rvs libtoyreleng.a tr-square.o tr-cube.o tr-hypot.o
cp libtoyreleng.a /usr/local/lib/
cp toy-releng.h /usr/local/include/

We could now modify our program toy-releng-sample.
c to exercise this library:

#include <stdio.h>
#include "toy-releng.h"

int main(int argc, char *argv[])
{
printf ("welcome jto the package s, version, js\n",
PACKAGE, VERSION);
double x = 3.2;
double x_sq = tr_square(x);
double x_cu = tr_cube(x);
printf ("square (%f) is %f--ucube (%) L is %f\n", x, \
X_sq, X, X_cu);

x = 3;
double y = 4;
printf ("hypot (%f, %f)isy%f\n", x, y, tr_hypot(x, y));
return O;
}

Listing 4.5: toy-releng-sample.c

and we would compile this program with:

gcc -c toy-releng-sample.c
gcc -o toy-releng-sample toy-releng-sample.c -ltoyreleng

and a run would look like:

L If you vaguely remember that the hypot function should be computed differently because of possible overflows, you are right — in Section
we discuss how this function fails for some arguments and how it can be written more robustly. For now we will pretend that we did not notice
this bug creeping in to our software: by ignoring now it we can later look at how to handle bug reports and test suites.

$./toy-releng-sample
square(3.2) is 10.24 --cube(3.2) is 32.769
hypot(3, 4) is 5

This paper is part of a software repository in which ev-
erything has been created in the same order as the concepts
were introduced into the paper. To demonstrate how we
create this library in our approach to software development
and release engineering we:

1. Create the files tr-square.c, tr-cube.c,
tr-hypot.c, toy-releng.h shown above.

2. Add them to version control with:

hg add tr-square.c tr-cube.c tr-hypot.c toy-releng.h
hg commit -m 'added the files needed for \
libtoyreleng'

3. Modify our main C program toy-releng-sample.c
as shown above.

4. Commit the changes to toy-releng-sample.c with:

hg commit -m 'added the files needed for \
libtoyreleng'

4.2 Building and installing that
simple library with automake

The procedure shown in Section for building
litboyreleng.a is reasonably simple, but there are sev-
eral good reasons to have it built by our build system.
Apart from the automation of those steps, inserting it into
our build system (specifically in Makefile.am) will gen-
eralize to very complex library scenarios with almost no
effort.

To add a library to Makefile.am we add the following
linesf]

bin_PROGRAMS = toy-releng-sample
toy_releng_sample_SOURCES = toy-releng-sample.c
toy_releng_sample_LDADD = libtoyreleng.la -1m

1lib_LIBRARIES = libtoyreleng.a
libtoyreleng_a_SOURCES = tr-square.c tr-cube.c tr-hypot.c
include_HEADERS = toy-releng.h

Listing 4.6: Makefile.am

note that at this point our sample .h file
toy-releng-sample.h is not useful anymore. We will
remove it from Makefile.am and from the repository as
well with

hg remove toy-releng-sample.h

hg commit

commit message:

added the files to make our library and removed the
unnecessary toy-releng-sample.h

When we start using shared libraries with libtool in au-
tomake we also need to add a couple of lines to configure.
ac, which now looks like:

AC_INIT([toy-releng], [0.4.0plus], [mark@galassi.org])
AM_INIT_AUTOMAKE([-Wall foreign])
AM_PROG_AR

AC_PROG_LIBTOOL
AC_CONFIG_SRCDIR([config.h.in])
AC_CONFIG_HEADERS([config.h])
AC_PROG_CC

AC_CONFIG_FILES([

Makefile

toy-releng.spec

D

AC_OUTPUT

Listing 4.7: configure.ac — after we introduce shared libraries

these changes to configure.ac are significant enough that
we will need to run

autoreconf -i

Now you can run make and make install and it will
install into /usr/local/lib/libtoyreleng.a and /usr/
local/include/toy-releng.h, after which end user pro-
grams can use the library.

4.3 Making libtoyreleng a shared li-
brary

Most modern operating systems have a mechanism for link-
ing to libraries at run time instead of bundling all the li-
brary code into the executable. The compiler is invoked
in a particular way so that one can load and invoke code
dynamically.

Building shared libraries is quite annoying, and doing
so portably is almost intractable. In the 1990s the GNU
libtool project (Matzigkeit et al. [1996) tried to provide a
portable way of building shared libraries on the various
UNIX-like system and on Windows. The libtool pro-
gram integrates with automake and autoconf to make this
almost transparent.

You do little more than changing the two lines in
Makefile.am that build the library. You change LI-
BRARIES to LTLIBRARIES, .a to .la, and _a to _la:

...
toy_releng_sample_LDADD = libtoyreleng.la -1m

1ib_LTLIBRARIES = libtoyreleng.la
libtoyreleng_la_SOURCES = tr-square.c tr-cube.c tr-hypot.c
...

Listing 4.8: Makefile.am

After this change the files installed in /usr/local/lib
will be:

2Note that in this paper I sometimes show small portions of the files I modify, but the version control repository is public so you can always
clone the repository and “play” through the project as it progresses, obtaining the correct full file at any moment.

$ 1s -1 /usr/local/lib/libtoyreleng*
/usr/local/lib/libtoyreleng.a
/usr/local/lib/libtoyreleng.la
/usr/local/lib/libtoyreleng.so
/usr/local/lib/libtoyreleng.so.0
/usr/local/lib/libtoyreleng.s0.0.0.0

where the .a file is the static library (which also gets in-
stalled), and the files that end with .so* are the shared
libraries.

End user programs would still link with the same line:

gcc -o my-program my-program.c -ltoyreleng
although, depending on how your system is configured, you

might need to add an option specifying that libraries are
installed in /usr/local/lib:

gcc -o my-program my-program.c -L/usr/local/lib -ltoyreleng

4.4 Updating our packaging spec to
install the library

Very little has to be done to add this library to our pack-
aging schemes. The Debian package will not change at all,
while the RPM spec file just needs a few more entries in
its %files section:

...

%files

%doc README NEWS Changelog toy-releng-howto.pdf
%changelog

%{_datadir}/%{name}/*

%{_mandir}/mani/*

%{_includedir}/*.h

%{_bindir}/*

%{_libdir}/*

...

Listing 4.9: toy-releng.spec.in — adding library

4.5 Releasing 0.5.0:
and final release

pre-releases

The introduction of a library is a significant enough event
that we will bump up the minor version number to 5 and
release toy-releng-0.5.0.

Once we have committed all our work in creating the
library we will follow our procedure to create a release
branch and then work on that branch to put the release
out:

hg branch branch-release-0.5
hg -v update branch-release-0.5

4.5.1 Finishing the release without notic-
ing the tiny bug

Then we edit configure.ac and set the version to
0.5.0~alpha.0 and follow the steps for a release from Sec-

tion [3.4t

1. Add to the NEWS file with end-user-visible release
notes. For example:

* Noteworthy changes in release 0.5.0 (2014-02-27)
** Features
*** Introduced the libtoyreleng library into the \
build system
*** Top level program is now toy-releng-sample
*%x Added significantly to toy-releng-howto.tex
Documented the addition of shared libraries.

Listing 4.10: NEWS file for 0.5.0

2. Make sure that everything builds and installs with
“make distcheck’

3. Also confirm that the RPM spec file fits well by run-
njng “rpmbuild -ta toy—releng—0.4.0p1us.tar.gzw

4. Commit to version control.

5. Edit configure.ac and change the version from
0.4.0plus to 0.5.0~alpha.O

6. Commit to version control.

7. Tag the version control repository with

hg tag release-0.5.0~alpha.0

8. Prepare RPMs and debs with:

make distcheck

rpmbuild -ta toy-releng-0.5.0.tar.gz
debchange -v 0.5.0~alpha.0

debuild -us -uc

9. Change the wversion in
0.5.0~alpha.Oplus:

configure.ac to

AC_INIT([toy-releng]l, [0.5.0~alpha.Oplus], \
[mark@galassi.org])

Listing 4.11: configure.ac — update the version to plus

and update the Debian version for snapshots with

debchange -v 0.5.0~alpha.Oplus

You now release version 0.5.0~alpha.0 to people on
your team. They use it and point out that it seems to
work well, but they do not see enough documentation. For
example, the three library functions are not documented,
and there is no real reason to provide a man page for the
toy-releng program which is not used.

You quickly write man pages for tr_square, tr_cube
and tr_hypot in files tr_square.3, tr_cube.3, tr_

3See my toy-releng mercurial repository for details on these files; I will not list them in full in this paper.

hypot.3. These files then get “hg add”-ed to the repository,
and you mention them in Makefile.am’s dist_man_MANS
variable so that they get automatically installed. E|

You are now ready to release 0.5.0: you update the
NEWS file, you update configure.ac to have version
0.5.0 in the AC_INIT line, then you tag and distribute
according to our usual checklist.

4.6 Closing out (for now) the 0.5 re-
lease branch

Now that we have put out the 0.5.0 release we want to
return to our ordinary development. These are the things
you need to do to close out a branch:

1. Make sure that you committed all our changes that
were part of 0.5.0 and that you tagged the release
with: “hg tag release-0.5.0” (you can type “hg
tags” to make sure).

2. Change the version in configure.ac to 0.5.0plus
and commit with “hg commit -m ’returning to
development snapshots’”

3. Go back to the trunk (“default”) branch, and check
that you are on the branch you think you are on:
hg branch ## should report branch-release-0.5

hg -v update default
hg branch ## should report default

4. Merge the updates made on branch-release-0.5 into
the trunk:

hg merge branch-release-0.5

(do any editing as needed; probably not in |\
this case)

hg commit -m 'merged branch-release-0.5 into \
default

From this point on your future commits will be on the
trunk, and thanks to this merge the trunk will include any
work you had done on the release branch.

18

Chapter 5

Bug-fixes, test suites
and 0.5.1

I will now demonstrate how we handle the cycle of receiv-
ing a bug report, fixing the bug, and putting out a new
bug-fix release.

We will imagine the scenario in which a programmer
outside our company has received the distribution of our
library, tried writing a program that uses it, and found a
situation in which our functions return incorrect values.

Meanwhile, back at our company, all the programmers
have been busily working on introducing new features that
will end up in version 0.6.0

5.1 Receiving and verifying the bug
report

A programmer called Ada Ritchie received a distribution of
our library libtoyreleng and tried to call the tr_hypot
function with the arguments = = 2.0, y = 3.0 x 10'%%.
When she printed the value of tr_hypot(x, y) she got
inf, which means that there was a numerical overflow.
The correct result, up to a certain precision, is 3 x 10%4,

Ada is a programmer who knows how to submit a useful
bug report: she sends us a minimal program that repro-
duces the bug, together with sample output:

/* program which demonstrates a bug in tr_hypot. Install |\
version
0.5.0 of toy-releng, then compile and run with:
gcc toy-releng-show-bug.c -o toy-releng-show-bug -\
ltoyreleng -1lm
./toy-releng-show-bug

the output should be:

tr_hypot (2, 3e+154) is inf
*/

#include <stdio.h>
#include <math.h>

#include "toy-releng.h"

1See the source repository for this full program.

19

int main(int argc, char *argv[])
{
double x = 2.0;
double y = 3.0e154;
printf ("tr_hypot (%g, %g)uis kg\n", x, y, tr_hypot(x, y));
return O;

}

Listing 5.1: toy-releng-show-bug.c

We compile and run this sample program according to
the directions and find that, indeed, the output is inf.

5.2 Returning to the release-0.5
branch

Now that we have acknowledged that a bug exists it is
very important that we return to the release branch to fix
it. This is because:

e We will want to send our favorite client programmer,
Ada Ritchie, a bug-fix release of our program. This
will be version 0.5.1

e We will not want to send any new work that might
have been done on the trunk (that stuff is for version
0.6.0), since Ada has already written software which
depends on version 0.5.0 and she only wants a fix to
0.5.0 so that she can continue her work.

e But we do want to merge the eventual bug fix into the
main development stream (default branch) as well.

The way to achieve these goals simultaneously is to add
bug-fixes to the release branch, thus not pulling in any ma-
terial from the trunk, and then to merge the updates from
the 0.5 release branch into the default branch.

To get started, make sure you are on the release branch:

hg branch ## should report default

hg -v update branch-release-0.5
hg branch ## should report branch-release-0.5

and our subsequent commits will go to branch-release-0.5

5.3 Adding a test program

Our client, that sharp programmer Ada Ritchie, has sent
us a useful test program along with her bug report. We
would be wise to include that program into our distribu-
tion so we can be certain to catch such bugs if they return.

We massage the program slightly to fit into automake’s
framework for “test suites” (Vaughan et al.|2000). We place
this test program in a new subdirectory called tests. We
use the C library function is_normal(z) to tell us if z is in-
finite (or some other bad value). We also rewrite the guts
of her program to return a non-zero exit code if the test

fails{l]

int main()

{

int n_errors = 0;

double x = 2.0;

double y = 3.0e154;

double z = tr_hypot(x, y);

if (lisnormal(z)) {
printf ("ERROR: /g is not normal\n", z);
++n_errors;

}

/* now try reversing the = and y arguments */
x = 3.0e154;

y = 2.0;

tr_hypot(x, y);
if (lisnormal(z)) {
printf ("ERROR: %g is not normal\n", z);
++n_errors;
¥
if (n_errors > 0) {
return 1;
} else {
return O;
¥
}

z =

Listing 5.2: test-hypot-overflow.c

We then update Makefile.am to have this segment:

check_PROGRAMS = test-hypot-overflow
test_hypot_overflow_SOURCES = tests/test-hypot-overflow.c
test_hypot_overflow_LDADD = libtoyreleng.la -1lm

TESTS = $(check_PROGRAMS)

Listing 5.3: Makefile.am — introducing a test program

We can now type (after re-running autoreconf -i)
“make check” and this will build our test program, run
it, and show us where it fails:

Testsuite summary for toy-releng 0.5.0plus

TOTAL: 1
PASS: 0O
SKIP: 0O
XFAIL: O
FAIL: 1
XPASS: 0
ERROR: O

H oH H O O H H

See ./test-suite.log
Please report to markQgalassi.org

Listing 5.4: Test suite log

and if we look at test-suite.log we will see:

[repeat of the earlier messages]
. contents:: :depth: 2

FAIL: test-hypot-overflow

ERROR:
ERROR:

inf is not normal
inf is not normal

Listing 5.5: Test suite log
Having added this test suite we should add and com-

mit it with “hg add tests/test-hypot-overflow.c; hg
commit”.

20

5.4 Fixing the bug

Now we are ready to fix the bug. We do so by scaling the
arguments to tr_hypot. One simple way of doing this is
to re-write the guts of tr_hypot as:

double tr_hypot(double x, double y)
{
double scale;
if (x > y) {
scale = x;
} else {
scale = y;
}
double a = x/scale;
double b = y/scale;
return scale * sqrt(a*a + b*b);

Listing 5.6: tr-hypot.c with scaling

If we compile toy-releng-show-bug.c with this new
version of tr_hypot we will find that it reports the correct
result of 3 x 10'®* without numeric overflows.

But even more conveniently and gratifying: we can now
type “make check” and we should see the output:

Testsuite summary for toy-releng 0.5.0plus

TOTAL: 1
PASS: 1
SKIP: 0O
XFAIL: O
FAIL: O
XPASS: 0
ERROR: 0

HoH OH OH O HH

Listing 5.7: Output of make check after fixing bug.

Our test has passed, so we commit this new ver-
sion of tr_hypot to the branch: “hg commit -m ’fixed
tr_hypot; test suite passes’”

5.5 Release 0.5.1

Now we go through the release process: update the NEWS
file to read (at the top):

* Noteworthy changes in release 0.5.1 (2014-03-10)

** bug fixes

*xx fixed tr_hypot to avoid overflow and underflow

** testing

**x set up testing infrastructure for automake

x% added first test program for tr_hypot overflows

Listing 5.8: NEWS

We check that we are also satisfied with the output of
“make distcheck”. Then we finalize this release by edit-
ing configure.ac and setting the version to 0.5.1, then we:
“make distcheck, “hg tag release-0.5.1", edit the ver-
sion to 0.5.1plus, and follow the procedure in Section [4.6
(reprised in Appendix [A]) to finish work on the branch and
return to development on the trunk.

Chapter 6
Topics — versioning

I hope that the previous chapters have given you an exam-
ple that you can use to create your own software project,
and that you now have a simple procedure to quickly put
out carefully reproducible releases.

Since variations in software projects can be quite great,
some projects will be much more complex than others,
and some additional protocols and tools might be useful
in managing larger projects. I discuss some of these topics
in this and the following chapters.

6.1 Discussion of version number-
ing

There are a large number of schemes for specifying software
versions, as you can see with a quick tour of the Wikipedia
article on “Software versioning.” (Wikipedia 2014b)

This is not a good thing: there is no need for that many
different schemes (Munroe 2011)), so we will propose one
which might work for all your projects.

First let us discuss what we are trying to communicate
with version numbering. There are two possible recipients
of our code:

6.1.1 A brand new user of our product

Brand new users don’t get much information from a ver-
sion number, since most of the information in there is to
distinguish it from previous versions.

But a widely used convention is that projects will num-
ber their versions starting with 0 during early development
phases: version 0.1.0 would be a very early one, 0.7.2 would
come later, but it would still be considered an early devel-
opment version.

Then comes the time in which the software is feature-
complete, stable, and the developers have committed to
not change the interfaces without a proper process. At
that point the developers will release it as version 1.0.0

21

6.1.2 A user who is upgrading from a pre-
vious version

A user who had a previous version of the software will want
to know the following things:

e Is the project in early development or is it mature?

e Is there significant new functionality?

Does this break compatibility with previous versions?

e Is this a pre-release leading up to a proper release?

Is this a development snapshot?

Is this a bug-fix release?

6.1.3 Semantic versioning

Tom Preston-Werner has proposed a uniform way of nam-
ing software versions called Semantic Versioning (semver)
(Preston-Werner [2013)) which defines clear semantic mean-
ing for version numbers.

Version numbers are specified as triads X.Y.Z where X
is the major version number, Y is the minor version num-
ber, and Z is the patch number (also referred to as bugfix
version number.)

Pre-releases are specified with a suffix to the X.Y.Z
triad, with the form alpha.0, alpha.l, ... for alpha test re-
leases, and the same for beta test releases. You can also
have a series of release candidates with the suffix rc.0, rc.1,

Semver has answered almost all the questions in Sec-
tion [6.1.2)

e If the version is >=1.0.0 then the program is mature.

e The major version number is updated when you in-
troduce backward-incompatible changes.

e An increase in the minor number indicates new func-
tionality.

e The pre-release is clearly marked with that suffix.

I find two problems with the current version of semver
(2.0.0) for practical deployment.

The first is minor: there is no specified marking for
development snapshots after a release. Adding the string
“plus” after the patch number works well: 1.3.2plus can
be used for unreleased development snapshots after version
1.3.2.

The second problem is more serious: semver does a
good job of expressing the semantics of what version num-
bers mean, but it also dictates the specific characters that
are to go into the version number: a dot (period) between
numbers, and a dash (hyphen) between the main version
and the pre-release portion.

The problem with specifying syntax details is that it
might be incompatible with how widely adopted packag-
ing systems already do business. In particular, RPM and
Debian have already specified what characters are allowed
to go into a version number.

The biggest concern is using a hyphen in version names:
1.3.2-alpha.0, for example, will not be a valid RPM ver-
sion number, and it might also not work well with GNU
tarballs and Debian packages. There are ways of tricking
RPM into accepting the version number. One way is to
remove the hyphen and use 1.3.2alpha.0, but when you
do that the version will be considered bigger than 1.3.2,
whereas you want pre-releases to be considered smaller. In
practice the packaging system will refuse to upgrade from
1.3.2alpha.0 to 1.3.2, which is clearly a very serious
problem.

My proposal here is to use the tilde character (~) in-
stead of the hyphen to separate the version and the pre-
release string. The tilde character is treated specially by
both Debian and RPM packaging systems: it has the low-
est possible precedence in version ordering, which means
that we have a guarantee that: 1.3.2~alpha.0 < 1.3.2

This proposal of using the tilde to separate pre-releases
is what I have used in the repository that accompanies this

paper.

6.1.4 My full proposal for versioning

This proposal is based on using all the semantics of the
semver 2.0.0 specification (Preston-Werner [2013)).

I then propose using almost all of the syntax from the
semver specification, with the following exceptions:

e Pre-releases (alpha, beta, release candidates) may be
denoted by adding a ~ (tilde) and the string alpha,
beta or rc, followed by a snapshot number. For ex-
ample, leading up to version 0.5.1 we can have a
sequence of testing pre-releases numbered:

0.5.1~alpha.0 < 0.5.1~alpha.1 < 0.5.1~beta.0
< 0.5.1~rc.0 < 0.5.1

e Unreleased post-release development snapshots may
be denoted by adding the string “plus” after the
patch number, with no separation. For example,
after releasing 0.5.1, unreleased snapshots will be
marked as 0.5.1plus

e (minor issue) The “build metadata” portion of the
specification should be handled by the packaging “re-
lease” string, rather than being part of the software
version number. The reason for this is that semver
considers “build metadata” to be useful information,
but void of semantic meaning.

Given that I cited Munroe’s XKCD commentary on the
proliferation of standards (Munroe 2011)) as a compelling
demonstration of the problem of “too many developers rein-
venting the wheel”, I feel that I have to justify the fact that
I am changing the standard (and thus adding to the pro-
liferation).

The issue of “post-release development snapshots” is
important. Look at this scenario: we release version 0.5.1
of our software, and then we start making changes to it. If
we leave the version number unchanged, then every time
we put out a snapshot the end user would report a bug
against version 0.5.1. When we get this bug report we
would not know if it is a big problem we have to worry
about (a bug in the official 0.5.1 release) or something less
urgent to investigate (a bug in a development snapshot).
We often send snapshots to experienced end users, but
we would send only proper releases to inexperienced end
users. Knowing that an inexperienced end user is reporting
a bug against a snapshot would help the software manage-
ment process: we would immediately tell him to please use
a stable release instead of a snapshot.

The other significant issue is the use of ~ (tilde) in-
stead of ‘-’ (hyphen) to separate the version from the pre-
release information. This is also important because, as
stated above, the two packaging systems used in almost all
GNU/Linux distributions will refuse to upgrade from an
alpha or beta to a final release if the original semver ‘-’
(hyphen) is used.

6.2 Shared library versioning

Shared libraries have been the standard way of shipping
a compiled software library for a very long time. Instead
of linking all the library code into a single very large exe-
cutable, the shared libraries are installed separately on the
system, and when the main program needs that code it
loads the libraries dynamically at run time.

This brings up a possible serious problem: if the main
program and its libraries live in separate files, and are
possibly distributed independently, how do you know that
they are compatible with each other? An update of the
shared library could change its behavior and cause the
main program to crash or produce incorrect resultsEI

It is considered better for the program to exit with a
shared library “incompatible version” error message than
for it to crash mysteriously or produce incorrect results.

There are a few possible versioning schemes for shared
libraries. The most important thing such a scheme must
do is refuse to load an incompatible shared library into a
program, but there are other aspects to it.

The libtool documentation (Matzigkeit et al.[1996) has
a detailed chapter in which they describe a standard 3-
number versioning scheme for shared libraries. While the

IShared library versioning is one of the bigger aspects of a problem known in the Microsoft Windows operating systems as DLL Hell
(Wikipedia 2014a). Another aspect of DLL Hell is not finding the shared library in the first place. GNU/Linux software which does not
carefully handle shared library versioning can end up with a sort of DLL Hell.

concept of the shared library version numbers is related to
the three numbers in semantic versioning, there are very
important differences and shared library versioning should
be studied as a separate topic: there should be absolutely
no link between the software version and the shared library
version.

Please read the libtool manual’s description care-
fully before your program approaches version 1.0.0.
You will find a careful 6-step procedure on how to
handle shared library versions, which they mark as
“CURRENT:REVISION:AGE”. You will need to have these pro-
cedures firmly in place, and to practice them on pre-1.0.0
releases so you can claim that you are releasing stable soft-
ware.

23

Chapter 7

Topics — project
management tools

7.1 Bug and issue tracking

Many software projects begin with an informal approach
to bug tracking, but it is important to move beyond that
as soon as possible: your end users need to know which
bugs have been fixed in a new release, so you need to set
up your tools and process to make this clear.

Here is a basic checklist for bug tracking:

1. Assign the bug a unique identifier when you receive
it.

2. Verify the bug against a specific release of the soft-
ware.

3. Write a program (or develop some other procedure)
to reproduce the bug and add it to your test suite,
as demonstrated in Section [5.3l

4. Mark that the bug has been fixed in a few places:
the ChangeLog file (and/or the version control com-
mit message) for all tracked bugs, and the NEWS file
for major bug fixes. The notes yout place should
reference the bug tracking number.

It would be a valid process to receive bug reports by
email and store all this information in a text file, but as
projects grow in size it might become difficult to manage
this process by hand.

There are software systems which automate the record-
ing of bug reports, and which allow you to track which ones
get resolved in various software releases. One that is often
used is the Trac project (Trac team |2014). Their suite
of web-based programs link bug reports (“tickets”) to the
version control system, and offer some other features to
facilitate project coordination. Many others bug tracking
systems are available.

24

7.2 Continuous integration tools

As your project grows in complexity you will probably
want to automate how you build and test your software,
and make the tests happen regularly, possibly every night,
so that you get an early warning if a bug has been intro-
duced or re-introduced.

There are tools which help with this process; they are
referred to as continuous integration (CI) tools. They typ-
ically clone your repository every night, build the software,
and can run the test suite in several different configurations
and circumstances.

The most widely used continuous integration tool in
the free software world is probably Jenkins (Smart [2011)),
which presents a web interface allowing team members to
configure tests and produce reports on these tests.

7.3 Public hosting

Hosting a project is the provision of servers to run the
various collaborative tools. Although strictly one could
use distributed version control and never need a central
server, in practice many teams choose to host the follow-
ing services in a single central server:

e Version control.
e Mailing lists.

e Documentation repositories (for documents that do
not end up in the project distribution). This is often
a WIKI system allowing media storage.

e Bug tracking.
e Continuous integration.

I have touched on most of these topics individually, but
there are many other tools that can facilitate collaboration,
such as blogging, microblogging, web-based forums, ...

There are two aspects to hosting these services which
are sometimes confused, but should not be:

e The software package which bundles together and co-
ordinates all these services, and

e A web server, administered by some organization,
which allows members of the public to set up pages
for their own project using one of the aforementioned
software packages.

If you want your project to be hosted you can ei-
ther use your own web server and configure it to run
the software you need, or you can use one of the public
hosting servers. The first widely used ones were https:
//sourceware.org/| (used internally at Cygnus and later
RedHat), and http://sourceforge.net| (which was the
first to allow projects from the general public). The GNU
project offers hosting for many of its projects at https://
savannah.gnu.org and https://savannah.nongnu.org

https://sourceware.org/
https://sourceware.org/
http://sourceforge.net
https://savannah.gnu.org
https://savannah.gnu.org
https://savannah.nongnu.org

The advent of distributed version control systems, such
as Mercurial and Git, as well as general advances in
client and server side web capabilities, prompted the de-
velopment of a new generation of hosting servers such as
https://gitlab.org/| (git), https://github.com/| (git)
and https://bitbucket.org/ (mercurial and git).

At this time I do not have specific recommendations on
which hosting server to use. I only encourage the adoption
of free software tools, and many of these are based on a
proprietary web infrastructure, which would cause damage
to projects in the long term since they would not have the
freedom to transfer their work to another setup if their
provider were to change its terms or disappear.

The more frequently used free software public hosting
sites at this time have practical limitations (GNU Savan-
nah depends on the limited financial resources of the GNU
project, and gitlab allows git but not mercurial).

My advice here is to survey the current state of public
hosting serversﬂ as well as the options for hosting on your
own servers, and make a choice as your project is starting.
But do not commit too much to the specifics of one ap-
proach, and be prepared to migrate to a different host if
necessary: many projects have had to do it.

1One place to start is http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities

25

https://gitlab.org/
https://github.com/
https://bitbucket.org/
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities

Chapter 8

Topics — more about
the world of
packaging

Software packaging is an important, ubiquitous and rapidly
changing area of software engineering. I will discuss some
of the issues that surround packaging, trying to avoid the
rapid obsolescence that lurks around any statement on this
subject.

In the “self referential HOWTO” that constitutes the
first part of this paper, leading up to the release of ver-
sion 0.5.1, I referred to packaging often, giving a recipe for
preparing Red Hat (RPM) and Debian (deb) packages for
toy-releng.

But I did not cover two important parts of the world
of packaging.

First: there is a strong point of view that the author
of a program should not be the same person who prepares
the packages.

Second: it is important to understand a bit more about
how packages fit together into large scale coordinated pack-
age repositories.

8.1 Who should do the packaging?

When a new major GNU/Linux distribution release is
about to come out, or when a new version of an important
package comes out, the packaging team for that distribu-
tion creates (or updates) the RPM spec file or the Debian
packaging description files.

The people who do this are experts, they do it quickly
and precisely, and they follow the careful guidelines of their
GNU/Linux distribution[f]

The packaging team might find your attempt at pro-
viding an RPM spec file to be misguided and not up to
their standards, so they will either write one from scratch,

or use yours as a starting point to write their own.

They also might apply some patches to the source code
that you distribute.

They will then maintain their packaging specification
and source patches separately from the package source
code!

You might wonder whey I had you go to the trouble of
creating and exercising packaging for toy-releng. There
are a couple of reasons:

1. Tt is unlikely that your package will be picked up to
be included in one of the major distributions, so the
only package specs your end users will get will be the
ones you provide.

2. If and when your package is picked up by a major
distribution, you will still want to test the packaging
in-house.

3. It doesn’t hurt the distribution maintainers to have
a package template to start from, even if they barely
use it.

4. Testing your software as it gets installed by the pack-
age manager is a very good test of software robust-
ness.

For these reasons I recommend continuing to maintain
and distribute packaging specifications for RPM and De-
bian.

8.2 Coordinated package reposito-
ries (apt, yum)

When you install a Red Hat based system (such as Red Hat
Enterprise Linux, CentOS, SUSE or Fedora), or when you
install a Debian based system (such as Debian or Ubuntu
GNU/Linux), you almost never hunt down the individual
packages that you need and then run the RPM or dpkg
commands directly to install them.

What you do, instead, is use a coordinated package
repositoryE] Let us say, for example, that you have heard
of the legendary program rdiff-backup and you want to
install it on your system.

On RPM-based systems you will type

yum search all rdiff-backup
and on Debian-based systems you will type:
apt-cache search rdiff-backup

In both cases you will find out that the package is in-
deed called rdiff-backup, and you will be able to install
it with, respectively:

sudo yum install rdiff-backup
sudo apt-get install rdiff-backup

INote that other distributions, such as the Berkeley UNIX variants, also make such an effort. Proprietary operating systems do very little
of this since they don’t consider it their task to offer anything beyond the minimal operating system and a few bundled utilities.

2The word repository comes up in several contexts; we have now seen it used for version control repository (a collection of files) and package
distribution repositories (a collection of RPM or deb packages, coordinated in some way.)

What the programs yum and apt-get are doing for Red
Hat and Debian respectively is to use the staggeringly large
effort by the distribution maintainers to coordinate a great
number of packages for their distribution. The packages
are all built against an identical infrastructure, so that the
binaries will all work.

8.2.1 A tale from 1999

To demonstrate how important this is I will give you a
bit of history about coordinated packaging. We will look
at a snapshot of the GNU/Linux world around the year
1999. Both the Red Hat and Debian distributions were
widely used. When you installed Red Hat Linux, at the
time version 6.0, you got a certain number of packages with
all the core functionality. These were officially supported
by Red Hat, and were coordinated and binary-compatible
with each other.

Beyond this basic officially supported set of packages
there were several web sites which collected RPMs for
many packages not directly supported by Red Hat, and
there was never guarantee that a package would work well
with other packages.

So what would happen if you released a package that
relied on a library outside of the supported Red Hat core,
for example a scientific library? You would probably find
a third party RPM of that library, so you could build your
own package against it and distribute your own RPM to-
gether with a copy of the third party library RPM.

Now imagine that someone else also built a program
which needed that same library. They found a different
user-provided RPM for that same library. Now if someone
wanted to install both your binary RPM and this other
one, they would not be able to because there would be
incompatible binary versions of this shared library. We
would be back in the world of DLL Hell mentioned above.

By contrast, back in 1999 the Debian GNU /Linux dis-
tribution followed a different policy: Debian has a large
team of volunteer maintainers who coordinate a very large
number of packages for the distribution. FEven back in
1999 it would be very unlikely that you would need user-
provided RPMs for anything, let alone an infrastructure li-
brary. Debian had also developed the apt-get tool which
automatically pulled the other programs needed to sup-
port the program you request. Nothing like that was in
widespread use for the RPM-based distributions.

8.2.2 How it is today

This story highlights the importance of having a very large
core collection of coordinated packages. Since 1999 the
RPM-based distributions have started using centrally co-
ordinated package repositories. For example, at the time
of writing, when you install a Fedora 20 (RPM-based) dis-
tribution, there is a large team of maintainers doing the
same thing that the Debian maintainers do: they offer co-
ordinated and up-to-date binary packages for a very large

27

number of packages. As I have mentioned, in RPM-based
distributions the tool used is called yum, which works anal-
ogously to Debian’s apt-get.

The more commercial software distributions, like Red
Hat Enterprise Linux, offer a much smaller collection of
supported packages. This is because they offer commercial
support, and are not willing to support too many packages.
To get around this limited commercial offering, the Fedora
project volunteers have put together the EPEL effort: ad-
ditional repositories, coordinated with the Red Hat Enter-
prise base packages, which make for a much larger core of
coordinated RPMs.

8.2.3 How does this affect our release en-
gineering?

Apart from being very useful for end users and developers,
the notion of a coordinated package repository can be very
useful to us. One way to distribute your programs is to
offer a yum repository for RPM-based distributions and
an apt repository for Debian and Ubuntu.

This way your users do not have to hunt for the
software: they will receive it automatically when they
type sudo yum update OT sudo apt-get update; sudo apt-get \
dist-upgrade.

It takes a small effort to set these repositories up, but
once you have gone to that trouble the process of distribut-
ing your new releases is remarkably smooth.

The Fedora documentation team has a simple guide to
creating a Yum repository (Fedora documentation team
2014)), and the Debian team has an analogous guide (De-
bian wiki team [2014)).

Chapter 9

Topics —
miscellaneous notes
and tricks

9.1 Adding version info to BTEX

A mismatch between documentation and software can
make for a poor user experience as well as obfuscating
whether bug reports are due to incorrect use of the soft-
ware.

One could address this by adding a footnote to the title
that clarifies it:

\title{A self-referential HOWTO on release \
engineering\footnote{For
use with software version 0.5.1}}

Listing 9.1: s/w version in doc title

but this is error-prone because it requires human input in-
stead of being automatic. In hardware safety engineering
we use the term “engineering interlock” to describe a sys-
tem that guarantees the coupling of two separate things (in
our case: the software version number and the documenta-
tion subtitle) and does not rely on a human remembering
to take a step.

In Section I showed how the program
toy-releng-sample.c can use information from the build
system. Here I show that many tricks are possible to take
this interlock further. Since our IXTEX documentation
does not have access to the C preprocessor symbols in
config.h.in and config.h, we make a new file called
VERSION.input.in

\def \PAPERVERSION {@VERSION@}

Listing 9.2: VERSION.input.in

If we then add to configure.ac the appropriate line:

#[...]

AC_CONFIG_FILES([

Makefile

toy-releng.spec
$srcdir/howto-paper/VERSION. input

28

D
AC_OUTPUT

Listing 9.3: configure.ac with VERSION.input

then configure will transform this into a file called
VERSION. input:

\def \PAPERVERSION {0.5.1plus}

Listing 9.4: VERSION.input

which we can include into our paper by putting this line
at the top of toy-releng-howto.tex:

\documentclass{report}
\input{VERSION.input}
Jl...]

Listing 9.5: VERSION.input

9.2 Other build systems

In this paper I have used GNU autotools as a build system
for all the examples. This is because the autotools cur-
rently have an edge over other options when it comes to
packaging and release engineering.

There are several other approaches people have used
to build their software. They all have advantages (which
are sometimes just apparent advantages but give problems
when projects get more complex) and disadvantages.

I will briefly mention some of them, but be aware that
most of these sections are to give you background informa-
tion — the only build system you should take seriously is
cmake (Section [9.2.5)).

Before describing these alternatives I will emphasize
one of the more important aspects of the GNU-style re-
lease tarballs that we have been using in our toy project.

9.2.1 The beauty of the standard make tar-
gets

When you first learn to use make and build systems you
think that you will only need a few targets when you com-
pile, for example:

make

make doc
make install

But when you have built your first non-trivial project,
and have had to think about how it will be packaged, as
we have done in this self-referential HOWTO, you will find
that you really need most or all of the exotic-seeming tar-
gets described in the GNU automake manual.

You also need to be able to compile with one prefix, and
install with a different prefix, since this is crucial for the
packaging system to prepare binary packages. And you
need to perform a staged installation using the DESTDIR
variable.

If you are not yet convinced of this you should look
carefully at how RPM and Debian packaging prepares a
directory tree with all the correct files, and then plucks
those files out to put them into the package bundle.

The typical sequence used by the package builder looks
like this:

./configure --prefix=/usr

configuring like this, the program knows
its files are under /usrt

make

make DESTDIR=/var/tmp/DUMMY_TARGET install

Listing 9.6: build sequence for package preparation

after which the binaries will be in /var/tmp/DUMMY_
TARGET/usr/bin and so forth, but all these files will be
configured to work out of /usr/bin, /usr/lib, ...

The result is that the package manager is now ready
to install these files in /usr/... on the target computer,
and this procedure never trampled those directories on the
build computer.

9.2.2 A shell script with a name like
compile.sh

People often start with a single shell script which compiles
all their code together into an executable. This is not an
option for any project that goes beyond a couple of source
files: re-compiling all the files takes too long, and there
is no structure which would allow packaging systems to
install and enumerate all the important files.

9.2.3 Clever hand-crafted Makefiles

For small projects you might feel some relief at using a
simple Makefile to build and install your programs. This
does not scale well to more complex projects, but the GNU
version of make has several enhancements over the tradi-
tional UNIX make, and this has tempted some designers
of large software systems to create include files for GNU
make.

These “clever” Makefiles allow you to organize a set
of directories, set some variables in your own Makefile,
include a file that might be called something like make_
macros.mk, and everything will build.

Clever Makefiles end up suffering from various prob-
lems when your project grows. Make was originally not
aimed at enforcing a structure that works well for packag-
ing, not to mention shared libraries and other facilities.

You would need to include a lot of extra structure into
your Makefiles, and you would end up recreating a lot of
the functionality that the autotools give you.

9.2.4 Drop-in build systems arranged by
one of your infrastructure pieces

There are some large software systems with a collection of
libraries that you are supposed to link to and which pro-

29

vide you with a custom build system that hides the details
of linking to their libraries.
Examples of this are:

The gt widget set has a program gmake that does every-
thing for you so that you do not have to find all the
libraries you need to link to, nor do you need to figure
out the paths to the .h files you are #include-ing.

MPI The message passing interface is the most common
tool for massively parallel programming: MPI im-
plementations offer a wrapper around the C/C++
compiler called mpicc.

Geantj (Agostinelli et al.|2003)) is one of the most impor-
tant particle physics simulation programs, developed
at CERN to support the Large Hadron Collider and
other efforts, but now used throughout the particle
physics community. Geant4 originally provided ex-
amples with a drop-in directory structure in which
you would drop your C++ source code and the com-
pilation would “just happen”. Today the authors have
moved away from that approach, both for their own
development and for examples: Geant4 example code
now comes with template CMake project files.

The problem with the approach of drop-in Makefiles is
that every one of these packages wants to own your ap-
plication. If you use more than one of them, you cannot
coordinate their drop-in build approaches!

There is, of course, always a way to just find where the
.h, .a and .so files provided by these libraries live and to
come up with your own linking instructions.

My strong proposal here is to never use the drop-in
build systems, but rather determine if the library providers
have also offered a way of locating where their files are so
that you can build your code in a portable way.

The most robust approach is to have a script called
myprogram- config which takes options --1ibs and --cflags
and so forth. To compile a program that uses the GNU
Scientific Library, for example, you type
gcc “gsl-config --cflags™ mymathprogram.c “gsl-config --libs”

Listing 9.7: compiling with GSL

and you can combine this with similar ways of finding
the flags needed for all your other infrastructure libraries.
There is also a framework for such -config programs
called pkg-config, which allows you to write a descrip-
tor file for your library.

Some programs that used to offer drop-in build systems
have now moved to offering a -config script.

9.2.5 CMake

CMake (Martin et al. |2010) is a cross-platform build sys-
tem which fills approximately the same niche as the GNU
autotools.

Being of more recent design, CMake gets around some
of the criticisms that are brought to the autotools, such

as the confusing collection of intermediate supporting files
and scripts that are created, as well as the several build
steps.

On the other hand CMake does not provide one of au-
totools’s most important outputs: a GNU-compliant tar-
ball which can install on a computer that does not have
advanced developer tools.

The lack of GNU-compliant tarballs also means that
RPM and Debian packaging are not as straightforward to
produce, although CMake provides rich enough Makefiles
that the packaging specifications are not very difficult to
produce.

At the time of writing CMake is beginning to provide
tools to build packages: the new CPack program auto-
mates many of the packaging tasks.

CMake is free/open-source software and is certainly
a valid alternative to the GNU autotools. At this time
CMake is used in many large and complex free software
projects. While autotools retains a small edge, I consider
CMake viable for complex projects.

9.3 Virtual machines

Your release testing should be done on a great variety of
computer configurations.

This will flush out subtle bugs and improve the user ex-
perience: fewer users will have those problems, since you
already discovered them in testing.

In the last few years virtualization software has reached
maturity, and CPU support for virtualization is now
widespread. The result is that in a few minutes you can
install several operating systems in virtual machines, con-
figure them all differently, and thus simulate many possible
end-user setups.

You might hear the point of view that it is a waste
of time to release for anything other than your advertised
platform — a manager, prompted by a marketing analysis,
will say: “we only support Red Hat Enterprise Linux 6”, or
“we only support Windows XP”. But independent of what
platform you officially support, you should know that: your
software will be much more robust on all platforms if you
test it widely.

I always aim to test the software I release on the follow-
ing GNU/Linux distributions: Debian unstable, Debian
testing, the latest Fedora, Ubuntu (both the current and
the latest Long Term Support releases), CentOS 7, 6 and 5
(CentOS is community-supported and binary compatible
with Red Hat Enterprise Linux). It is straightforward to
automate testing on virtual machines with all these oper-
ating systems. E|

11f needed you can also test on Microsoft Windows, using the Cygwin or MinGW environments to provide POSIX compatibility. I periodically
check the state of the ReactOS operating system to see if it has reached the point where I can try to compile my code on it.

30

Chapter 10

Acknowledgments

This work was supported by the U.S. Department of En-
ergy’s National Nuclear Security Administration as part of
the DIORAMA project in the Satellite Nuclear Detonation
Detection program.

I would like to thank collaborators from my entire ca-
reer who have shown me how they release software, and
have provided feedback on my procedures.

In particular I thank: Tom Tromey who introduced me
to automake back in April 1996; Christopher Gabriel with
whom I developed (in 1999) a parody of modern project
development which proposed applying very careful release
engineering approaches to vaporware - the release engineer-
ing approaches were quite serious and are similar to what
I present in this paper; Michael Fischer with whom I de-
veloped (in 1990) my first release engineering approach for
the Dominion world simulation game.

The Diorama project in Los Alamos is a very elaborate
and sophisticated software project in which I have been
able to explore advanced and subtle aspects of release en-
gineering.

And finally my thanks to Laura Fortunato for sugges-
tions on the pedagogical approach and for a remarkably
careful job proofreading this paper, trying out all the ex-
amples, and correcting several mistakes in the step-by-step
procedures. There might still be mistakes, but she caught
a lot of them.

31

Appendix A

Collected release
checklists

A.1 Starting a project

1.

Create a version control repository. Use a distributed
version control system (such as Mercurial or Git).
Add every file you author to the repository early,
and commit changes to all your files often.

Create a project roadmap. This will accompany you
through early releases. Eventually your project will
diverge from the initial roadmap, but it is crucial to
write down your design early on. In the project that
accompanies the tutorial, this is in the file project-
admin.org

Create your first source code files.

Set up a build system as soon as you have your first
source code files.

Exercise “make” and “make check” immediately.

Write documentation immediately and develop it in
step with the software.

A.2 Leading up to a release

For this example let us say that the release is 0.4.3, the
previous one was 0.4.2, and currently configure.ac has
the version set to 0.4.2plus.

1.

Make sure you are conceptually happy with what you
have done and you understand what goes into this
release.

Make a release branch (or update to that branch
if it already exists). For example: hg branch \

branch-release-0.4 OI' hg -v update branch-release-0.4

If any changesets from the trunk are needed in this
release, merge them into the release branch.

32

10.
11.
12.

Make sure that the software performs well when you
run it in your own development environment.

Update the NEWS file with release notes describing
end-user-visible changes.

Make sure that everything builds and installs with
“make distcheck”

Also confirm that the RPM spec file fits well by run-
ning “rpmbuild -ta toy—releng—0.4.2p1us.tar.gz?

Commit to version control.

Set the version for your test release in configure.ac,
for example 0.4.3~beta.1. Remember that alpha
releases are little more than snapshots, but once you
put out a beta release you can only make changes to:

(a) Fix critical bugs.
(b) Update documentation.

Commit to version control.
Tag the repository with hg tag release-0.4.3~beta.1

Edit configure.ac and add a “plus” to the version:
0.4.3~beta.1plus.

. Commit to version control, for example with hg \

commit -m 'returning to development snapshots'

A.3 Putting out the final release

1.

Update to the release branch with nhg -v update \

branch-release-0.4
Do a final check that the NEWS file is complete.

Edit configure.ac to set the version to (for example)
0.4.3

Tag the version control repository with

hg tag release-0.4.3

This tagging step is extremely important because it
guarantees that you can always reproduce what went
into version 0.4.3 from your version control reposi-
tory. This reproducibility will become very impor-
tant as your project grows, but even now you should
make a habit of it.

You can now make the tarball with

make distcheck

Prepare RPMs as shown in Section and the De-
bian package as shown in Section [3.3.2

Make your source tarball as well as your binary pack-
ages available to your end users.

Edit configure.ac and add a “plus”’ to the version:
0.4.3~beta.l1plus.

9. Commit to version control, for example with

hg commit -m 'returning to development snapshots'

10. Merge work on the release branch back in to the de-
fault branch.

33

Bibliography

Agostinelli, S et al. (2003). “GEANT4 - a simula-
tion toolkit”. In: Nuclear instruments and methods in
physics research section A: Accelerators, Spectrometers,
Detectors and Associated FEquipment 506.3, pp. 250—
303.

Atalassian, Inc. (2015). Bitbucket Project Hosting. Ac-
cessed: 2015-11-24. URL: https://bitbucket.org/.
Debian wiki team (2014). How To Setup A Debian
Repository. URL: https : / / wiki . debian . org /

HowToSetupADebianRepository.

Fedora documentation team (2014). Creating a Yum Rpos-
itory. URL: http://docs.fedoraproject.org/en-US/
Fedora/14/html/Deployment_Guide/sec-Creating_
a_Yum_Repository.html!

Fedora team (2013a). Fedora Packaging Guidelines. URL:
http : / / fedoraproject . org / wiki / Packaging :
Guidelinesl

— (2013b). How to create an RPM package. URL: http:
//fedoraproject . org/wiki/How_to_create_an_
RPM_package.

Galassi, Mark, James Theiler, Brian Gough, et al. (2009).
GNU scientific library: reference manual. A GNU man-
ual. Bristol, UK: Network Theory. 1SBN: 0-9546120-7-8.

Mackall, Matt (2006). “Towards a better SCM: Revlog and
Mercurial”. In: Linuz Symposium, p. 83.

Martin, Ken et al. (2010). Mastering CMake: A cross-
platform build system. Kitware Incorporated.

34

Matzigkeit, Gordon et al. (1996). GNU Libtool.

Mercurial wiki team (2014). Branching and merg-
ing in Mercurial (and Git) explained. URL:
http : / / mercurial . selenic . com / wiki /

BranchingExplained.

Munroe, Randall (2011). XKCD #927: Standards. URL:
https://xkcd.com/927/.

Preston-Werner, Tom (2013). Semantic Versioning 2.0.0.
URL: http://semver.org/|

Rodin, Josip and Osamu Aoki (1998-2013). Debian New
Maintainers’ Guide. URL: https://www.debian.org/
doc/manuals/maint-guide/index.en.html.

Smart, John (2011). Jenkins: The Definitive Guide. Or-
eilly and Associate Series. O’Reilly Media. ISBN:
9781449305352.

Stallman, Richard (1985). “The GNU Manifesto”. In: Dr.
Dobb’s Journal of Software Tools 10.3, pp. 30—. ISSN:
1044-789X.

Stallman, Richard et al. (1992-2013). GNU coding stan-
dards. URL: http://www.gnu.org/prep/standards/|

The GCC team (2015). GCC Development Plan. Accessed:
2015-11-24. URL: https://gcc.gnu. org/develop.
htmll

Trac team (2014). the Trac Open Source Project. URL:
http://trac.edgewall.org/.

Vaughan, GV et al. (2000). “GNU Autoconf, Automake,
and Libtool: Expert insight into porting software and
building large projects using GNU Autotools”. In: New
Riders, Indianapolis.

Wikipedia (2014a). DLL Hell — Wikipedia, The Free
Encyclopedia. [Online; accessed 22-March-2014]. URL:
http://en.wikipedia.org/w/index .php7title=
DLL_Hell&o01did=594200654.

— (2014b). Software versioning — Wikipedia, The Free
Encyclopedia. [Online; accessed 24-February-2014].
URL: http://en. wikipedia . org/w/index . php?
title=Software_versioning&oldid=596539144.

https://bitbucket.org/
https://wiki.debian.org/HowToSetupADebianRepository
https://wiki.debian.org/HowToSetupADebianRepository
http://docs.fedoraproject.org/en-US/Fedora/14/html/Deployment_Guide/sec-Creating_a_Yum_Repository.html
http://docs.fedoraproject.org/en-US/Fedora/14/html/Deployment_Guide/sec-Creating_a_Yum_Repository.html
http://docs.fedoraproject.org/en-US/Fedora/14/html/Deployment_Guide/sec-Creating_a_Yum_Repository.html
http://fedoraproject.org/wiki/Packaging:Guidelines
http://fedoraproject.org/wiki/Packaging:Guidelines
http://fedoraproject.org/wiki/How_to_create_an_RPM_package
http://fedoraproject.org/wiki/How_to_create_an_RPM_package
http://fedoraproject.org/wiki/How_to_create_an_RPM_package
http://mercurial.selenic.com/wiki/BranchingExplained
http://mercurial.selenic.com/wiki/BranchingExplained
https://xkcd.com/927/
http://semver.org/
https://www.debian.org/doc/manuals/maint-guide/index.en.html
https://www.debian.org/doc/manuals/maint-guide/index.en.html
http://www.gnu.org/prep/standards/
https://gcc.gnu.org/develop.html
https://gcc.gnu.org/develop.html
http://trac.edgewall.org/
http://en.wikipedia.org/w/index.php?title=DLL_Hell&oldid=594200654
http://en.wikipedia.org/w/index.php?title=DLL_Hell&oldid=594200654
http://en.wikipedia.org/w/index.php?title=Software_versioning&oldid=596539144
http://en.wikipedia.org/w/index.php?title=Software_versioning&oldid=596539144

	Motivation and plan
	A historical example: the GNU Scientific Library
	Requirements
	A gritty and real business
	And what are these established practices?
	A preview of our tour

	Getting started with our toy-releng project
	Cloning the repository
	Creating a first program and build system
	First stab at tagging and releasing: putting out release 0.1.0
	What do your ``end users'' do with a tarball?
	Adding a few more needed files
	Making the build system interact with the program
	Adding documentation
	Putting out release 0.2.0

	Completing toy-releng
	Making an RPM package
	Putting out release 0.3.0
	Debian packaging
	Release branches and 0.4.0
	Testing installing and upgrading the packages

	Introducing a library, and release 0.5.0
	A simple library, built and installed by hand
	Building and installing that simple library with automake
	Making libtoyreleng a shared library
	Updating our packaging spec to install the library
	Releasing 0.5.0: pre-releases and final release
	Closing out (for now) the 0.5 release branch

	Bug-fixes, test suites and 0.5.1
	Receiving and verifying the bug report
	Returning to the release-0.5 branch
	Adding a test program
	Fixing the bug
	Release 0.5.1

	Topics – versioning
	Discussion of version numbering
	Shared library versioning

	Topics – project management tools
	Bug and issue tracking
	Continuous integration tools
	Public hosting

	Topics – more about the world of packaging
	Who should do the packaging?
	Coordinated package repositories (apt, yum)

	Topics – miscellaneous notes and tricks
	Adding version info to LaTeX
	Other build systems
	Virtual machines

	Acknowledgments
	Collected release checklists
	Starting a project
	Leading up to a release
	Putting out the final release

